精英家教网 > 初中数学 > 题目详情

如图,在直角扇形ABC内,分别以AB和AC为直径作半圆,两条半圆弧相交于点D,整个图形被分成S1,S2,S3,S4四部分,则S2和S4的大小关系是


  1. A.
    S2<S4
  2. B.
    S2=S4
  3. C.
    S2>S4
  4. D.
    无法确定
B
分析:设AB=AC=2a,由S2=S扇形ACB-S半圆AB-S半圆AC+S4,根据扇形和圆的面积公式分别计算出它们的面积就可得到S2和S4的大小关系.
解答:设AB=AC=2a,根据题意得,
S2=S扇形ACB-S半圆AB-S半圆AC+S4=-2××π×a2+S4=S4
所以S2=S4
故选B.
点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰直角三角形ABC中,点D为斜边AB的中点,已知扇形GAD,HBD的圆心角∠DAG,∠DBH都等于90°,EF⊥AB,MN⊥AB,
且AB=2,则图中阴影部分的面积为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示为扇形DOF与直角△ABC的重迭情形,其中O,D,F分别在AB,OB,AC上,且
DF
与BC相切于E点.若OF=3,∠DOF=∠ACB=90°,且
DE
EF
=2:1,则AB的长度为(  )
A、6
B、3
3
C、6+
3
D、3+2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
A.如图1,一扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD长为20cm,贴纸部分的面积为
800
3
πcm2
800
3
πcm2

B.如图2,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,若OA=2,OC=4,则点B′的坐标为
(4,2)
(4,2)

查看答案和解析>>

科目:初中数学 来源:101网校同步练习 初三数学 北师大(新课标2001/3年初审) 北师大版 题型:044

如图,在直角坐标系xOy中,已知菱形OABC的顶点O在坐标原点,顶点B在y轴正半轴上,OA边在直线y=x上,AB边在直线y=-x+上.

(1)根据题意,直接写出菱形顶点,O、A、B、C的坐标,以及边长和∠AOC的度数;

(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交OA、OC于点M、N(M、N可以与A、C重合),作⊙Q与AB、BC、弧MN都相切.设⊙Q的半径为R,OP的长为y,求y与R之间的函数关系式;

(3)以O为圆心,OA为半径作扇形OAC,请问在菱形OABC中,除去扇形OAC后的剩余部分内,是否可以作出一个圆,使所得的圆是以扇形OAC为侧面的圆锥的底面,若存在,求出这个圆的面积;若不存在说明理由.

查看答案和解析>>

同步练习册答案