精英家教网 > 初中数学 > 题目详情
(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.
【答案】分析:(1)根据已知等边三角形的性质可推出△ADG是等边三角形,从而再利用SAS判定△AGE≌△DAC;
(2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形.
解答:(1)证明:∵△ABC是等边三角形,
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°.
∵EG∥BC,
∴∠ADG=∠ABC=60°∠AGD=∠ACB=60°.
∴△ADG是等边三角形.
∴AD=DG=AG.
∵DE=DB,
∴EG=AB.
∴GE=AC.
∵EG=AB=CA,
∴∠AGE=∠DAC=60°,
在△AGE和△DAC中,

∴△AGE≌△DAC(SAS).

(2)解:△AEF为等边三角形.
证明:如图,连接AF,
∵DG∥BC,EF∥DC,
∴四边形EFCD是平行四边形,
∴EF=CD,∠DEF=∠DCF,
由(1)知△AGE≌△DAC,
∴AE=CD,∠AED=∠ACD.
∵EF=CD=AE,∠AED+∠DEF=∠ACD+∠DCB=60°,
∴△AEF为等边三角形.
点评:此题主要考查学生对全等三角形的判定,等边三角形的性质及判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷13(党湾镇中 叶菁)(解析版) 题型:解答题

(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2010年河南省中考数学模拟试卷(一)(解析版) 题型:解答题

(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2009年河南省中招数学模拟试卷(1)(解析版) 题型:解答题

(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2005年四川省成都市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•成都)已知:如图△ABC是等边三角形,过AB边上的点D作DG∥BC,交AC于点G,在GD的延长线上取点E,使DE=DB,连接AE、CD.
(1)求证:△AGE≌△DAC;
(2)过点E作EF∥DC,交BC于点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.

查看答案和解析>>

同步练习册答案