精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠=90°,三角形的角平分线CE和高AD相交于点F,过F作FG∥BC交AB于点G,求证:(1)AE=BG.(2)若∠=30°,,求四边形的面积.
略解析:
证明:∵∠BAC=900
AD⊥BC
∴∠1=∠B
∵CE是角平分线
∴∠2=∠3
∵∠5=∠1+∠2
∠4=∠3+∠B
∴∠4=∠5
∴AE=AF……………1分
过F作FM⊥AC并延长MF交BC于N
∴MN//AB
∵FG//BD
∴四边形GBDF为平行四边形
∴GB=FN……………2分
∵AD⊥BC,CE为角平分线
∴FD=FM
在Rt△AMF和RtNDF中

∴△AMF≌△NDF
∴AF=FN
∴AE=BG……………5分
(2)∵∠B=300
AB//NF
∴∠8=300
在Rt△FDN中,FN=2FD=10
∴AF=AE=BG=FN=10
∴∠BAD=600
∴△AEF为等边△
∴EF=AE=10
∵GF//BC
∴∠EGB=∠B=300
∠4=∠9+∠10=600
∴∠9=∠10=300
EG=EF=10
在Rt△ABC中,tan300=
∴AC=10    ∠2=300
在Rt△CDF中,tan∠
∴CD=
S四EBDF=S△ABC-S△AEC-S△CDF=

……………10分
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案