精英家教网 > 初中数学 > 题目详情

在△ABC中,∠A:∠B:∠C=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数.

解:设∠A=3x,∠B=4x,∠C=5x,
∵∠A+∠B+∠C=180°,
∴3x+4x+5x=180°,
∴x=15°,
∴∠A=45°,∠B=60°,∠C=75°.
∵四边形AEHD内角和等于360°,
∴∠A+∠AEH+∠ADH+∠EHD=360°;
∵CE⊥AB;BD⊥AC,
∴∠AEH=90°,∠ADH=90°,
∴45°+90°+90°+∠EHD=360°,
∴∠EHD=135°.
则∠BHC=∠EHD=135°.
分析:本题先根据三角形内角和定理及∠A:∠B:∠C=3:4:5,求出△ABC三个内角的度数;然后利用垂直定义及四边形AEHD的内角和等于360°,求出∠EHD的度数,即∠BHC的度数.
点评:本题主要考查三角形的内角和定理、四边形内角和定理及垂直定义,解题的关键是熟练掌握三角形的内角和定理及其运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案