分析 根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.
解答
解:如图,∵等边三角形三线合一,
∴D为BC的中点,BD=DC=2,
在Rt△ABD中,AB=4,BD=2,
∴AD=$\sqrt{{AB}^{2}{-BD}^{2}}$=2$\sqrt{3}$,
∴等边△ABC的面积为$\frac{1}{2}$BC•AD=$\frac{1}{2}$×4×2$\sqrt{3}$=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.
点评 本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,考查了等边三角形各边长相等的性质,本题中根据勾股定理即可AD的长度是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x2+5x+6=0 | B. | x2-5x+6=0 | C. | x2-5x-6=0 | D. | x2+5x-6=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 有一组邻边相等的四边形是菱形 | |
| B. | 有一个角是直角的平行四边形是矩形 | |
| C. | 有一组对边平行的四边形是平行四边形 | |
| D. | 对角线互相垂直平分的四边形是正方形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com