精英家教网 > 初中数学 > 题目详情

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A?B?C?D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)如果点P、Q保持原速度不变,当点P沿A?B?C?D匀速运动时,OP与PQ能否相等?若能,求出所有符合条件的t的值;若不能,请说明理由.

(1)(1,0),1;(2)10,(14,12);(3)t=或t=.

解析试题分析:(1)根据题意,易得Q(1,0),结合P、Q得运动方向、轨迹,分析可得答案;
(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4,在Rt△AFB中,过点C作CG⊥x轴于点G,与FB的延长线交于点H,易得△ABF≌△BCH,进而可得C得坐标;
(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,易得△APM∽△ABF,根据相似三角形的性质,有,设△OPQ的面积为S,计算可得答案.
试题解析:(1)根据题意,易得Q(1,0),
点P运动速度每秒钟1个单位长度.
(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4.
∴AF=10-4=6.
在Rt△AFB中,
过点C作CG⊥x轴于点G,与FB的延长线交于点H.

∵∠ABC=90°=∠AFB=∠BHC
∴∠ABF+∠CBH=90°,∠ABF=∠BCH,∠FAB=∠CBH
∴△ABF≌△BCH.
∴BH=AF=6,CH=BF=8.
∴AB=
∴OG=FH=8+6=14,CG=8+4=12.
∴所求C点的坐标为(14,12).
(3)当t=或t=时,OP与PQ相等.
考点:相似三角形的判定与性质;二次函数的最值;全等三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.

(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1.

(1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是               
(2)求△ABC与△A′B′C′的面积比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知.如图,点D、E分别是在AB,AC上,.求证:DE∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,□ABCD中,E为BC延长线上一点,AE交CD于点F,若,AD=2,∠B=45°,,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

【探究发现】
按图中方式将大小不同的两个正方形放在一起,分别求出阴影部分(⊿ACF)的面积。(单位:厘米,阴影部分的面积依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.归纳总结你的发现:

【推理反思】
按图中方式将大小不同的两个正方形放在一起,设小正方形的边长是bcm,大正方形的边长是acm,求:阴影部分(⊿ACF)的面积。

【应用拓展】
1.按上图方式将大小不同的两个正方形放在一起,若大正方形的面积是80cm2,则图中阴影三角形的面积是          cm2.
2.如图(1),C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形⊿ACD和等边三角形⊿CBE,若⊿CBE的边长是1cm,则图中阴影三角形的面积是                        cm2.
3.如图(2),菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是   

(1)                      (2)

查看答案和解析>>

同步练习册答案