精英家教网 > 初中数学 > 题目详情

如图,已知?ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F.则下列结论中不正确的是


  1. A.
    S△BCF=4S△CDE
  2. B.
    ∠B=∠D
  3. C.
    CD=FA
  4. D.
    ∠F=∠BCF
D
分析:过C作CH⊥AD于H,推出∠D=∠DAF,∠DCE=∠F,证△DCE≌△AFE,推出△BCF的面积等于平行四边形面积,即为AD×CH,而△CDE的面积为×AD×CH,即可判断A;根据平行四边形性质即可判断B;由△DCE≌△AFE,推出CD=AF,即可判断C;推出∠DCE=∠F,即可判断D.
解答:A、过C作CH⊥AD于H,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠D=∠DAF,∠DCE=∠F,
∵在△DCE和△AFE中

∴△DCE≌△AFE,
∴S△DEC=S△AEF=DE×CH=×AD×CH,
∵S△BCF=S四边形ABCE+S△AEF
=S四边形ABCE+S△DEC
=S平行四边形ABCD
=AD×CH,
∴S△BCF=4S△CDE,故本选项错误;
B、∵四边形ABCD是平行四边形,
∴∠B=∠D,故本选项错误;
C、∵△DCE≌△AFE,
∴CD=AF,故本选项错误;
D、∵△DCE≌≌△AFE,
∴∠F=∠DCF,
已知没有告诉(也不能推出)∠DCE=∠BCF,故本选项正确;
故选D.
点评:本题考查的知识点是平行四边形的性质、全等三角形性质和判定,平行线的性质,主要培养学生运用性质进行推理的能力,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,已知?ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是
3

查看答案和解析>>

科目:初中数学 来源: 题型:

26、(1)探究规律:如图,已知?ABCD,试用三种方法将它分成面积相等的两部分;

(2)由上述方法,你能得到什么一般性的结论;
(3)解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口水井P,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知?ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)试说明DE=BC;
(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知ABCD是圆的内接四边形,对角线AC和BD相交于E,BC=CD=4,AE=6,如果线段BE和DE的长都是整数,则BD的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知ABCD是圆O的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM.

查看答案和解析>>

同步练习册答案