精英家教网 > 初中数学 > 题目详情

阅读下列材料,回答问题.
【材料1】乘积是1的两个数互为倒数,即数学公式数学公式互为倒数,也就是说,a÷b=x.则b÷a=数学公式
【材料2】乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加,即(a+b)c=ac+bc.
利用上述材料,巧解下题:数学公式

解:有误(-+-)÷(-
=(-+-)×(-30)
=×(-30)-×(-30)+×(-30)-×(-30)
=-20+3-5+12
=-10,
所以=-
分析:根据所给材料,先算(-+-)÷(-)的值,再根据倒数的定义即可求解.
点评:考查了有理数的除法,本题关键是看懂材料,灵活运用运算律简便计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料后回答问题:
在平面直角坐标系中,已知x轴上的两点A(x1,0),B(x2,0)的距离记作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意两点,我们可以通过构造直角三角形来求A、B间的距离.
如图,过A、B两点分别向x轴、y轴作垂线AM1、AN1和BM2、BN2,垂足分别记作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直线AN1与BM2交于Q点.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意两点A(x1,y1),B(x2,y2)之间的距离公式:|AB|=
|x2-x1|2+|y2-y1|2

如果某圆的圆心为(0,0),半径为r.设P(x,y)是圆上任一点,根据“圆上任一点到定点(圆心)的距离都等于定长(半径)”,我们不难得到|PO|=r,即
(x-0)2+(y-0)2
=r
,整理得:x2+y2=r2.我们称此式为圆心在精英家教网原点,半径为r的圆的方程.
(1)直接应用平面内两点间距离公式,求点A(1,-3),B(-2,1)之间的距离;
(2)如果圆心在点P(2,3),半径为3,求此圆的方程.
(3)方程x2+y2-12x+8y+36=0是否是圆的方程?如果是,求出圆心坐标与半径.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•十堰模拟)阅读下列材料后回答问题:
读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为
100
n=1
n
,这里“∑ ”是求和符号,例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为
50
n=1
(2n-1)

通过对以上材料的阅读,请解答下列问题:
①2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为
50
n=1
2n
50
n=1
2n

②计算
50
n=1
(n2-1)
12+22+32+…+502-50
12+22+32+…+502-50
=
42875
42875
.(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,回答问题.
材料:
股票市场,买、卖股票都要分别交纳印花税等有关税费.以沪市A股的股票交易为例,除成本外还要交纳:
①印花税:按成交金额的0.1%计算;
②过户费:按成交金额的0.1%计算;
③佣金:按不高于成交金额的0.3%计算(本题按0.3%计算),不足5元按5元计算.
例:某投资者以每股5.00元的价格在沪市A股中买入股票“金杯汽车”1000股,以每股5.50元的价格全部卖出,共盈利(  )元.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,回答问题.
【材料1】乘积是1的两个数互为倒数,即
a
b
b
a
互为倒数,也就是说,a÷b=x.则b÷a=
1
x

【材料2】乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把所得的积相加,即(a+b)c=ac+bc.
利用上述材料,巧解下题:(-
1
30
)÷(
2
3
-
1
10
+
1
6
-
2
5
)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读以下内容:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1

①根据以上规律,可得(x-1)(xn+xn-1+xn-2+…+x+1)=
xn+1-1
xn+1-1
(n为正整数);
②根据这一规律,计算:1+2+22+23+24+…22011+22012+22013=
22014-1
22014-1

(2)阅读下列材料,回答问题:
关于x的方程:x+
1
x
=a+
1
a
的解是x1=a,x2=
1
a
x+
2
x
=a+
2
a
的解是x1=a,x2=
2
a
x+
3
x
=a+
3
a
的解是x1=a,x2=
3
a


①请观察上述方程与解的特征,猜想关于x的方程x+
m
x
=a+
m
a
(m≠0)
的解;
②请你写出关于x的方程x+
2
x-3
=m+
2
m-3
的解.

查看答案和解析>>

同步练习册答案