精英家教网 > 初中数学 > 题目详情
(2012•南昌)如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C.
(1)写出二次函数L1的开口方向、对称轴和顶点坐标;
(2)研究二次函数L2:y=kx2-4kx+3k(k≠0).
①写出二次函数L2与二次函数L1有关图象的两条相同的性质;
②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.
分析:(1)抛物线y=ax2+bx+c中:a的值决定了抛物线的开口方向,a>0时,抛物线的开口向上;a<0时,抛物线的开口向下.
抛物线的对称轴方程:x=-
b
2a
;顶点坐标:(-
b
2a
4ac-b2
4a
).
(2)①新函数是由原函数的各项系数同时乘以k所得,因此从二次函数的图象与解析式的系数的关系入手进行分析.
②联系直线和抛物线L2的解析式,先求出点E、F的坐标,进而可表示出EF的长,若该长度为定值,则线段EF的长不会发生变化.
解答:解:(1)抛物线y=x2-4x+3中,a=1、b=-4、c=3;
∴-
b
2a
=-
-4
2
=2,
4ac-b2
4a
=
4×3-16
4
=-1;
∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,-1).

(2)①二次函数L2与L1有关图象的两条相同的性质:
对称轴为x=2,或顶点的横坐标为2,
都经过A(1,0),B(3,0)两点;
②线段EF的长度不会发生变化.
∵直线y=8k与抛物线L2交于E、F两点,
∴kx2-4kx+3k=8k,
∵k≠0,∴x2-4x+3=8,
解得:x1=-1,x2=5,∴EF=x2-x1=6,
∴线段EF的长度不会发生变化.
点评:该题主要考查的是函数的基础知识,有:二次函数的性质、函数图象交点坐标的解法等,难度不大,但需要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,
∠BAE的大小可以是
15°或165°
15°或165°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图,等腰梯形ABCD放置在平面坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.
(1)求点C的坐标和反比例函数的解析式;
(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?

查看答案和解析>>

同步练习册答案