精英家教网 > 初中数学 > 题目详情

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.请根据零点的定义解决下列问题:
已知函数y=x2+kx+2k-4(k为常数).当k=2时,求该函数的零点.

解:当k=2时,y=x2+2x,
故x2+2x=0,
解得:x=0,或x=-2.
故函数y=x2+2x的零点是0,-2.
分析:由题意得,函数的零点就是方程的根,只要解方程即可得零点,由方程x2+2x=0的解即可解决问题.
点评:本题主要考查了函数的零点及函数的零点存在性定理,函数的零点的研究就可转化为相应方程根的问题,函数与方程的思想得到了很好的体现.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且
1
x1
+
1
x2
=-
1
4
,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2013年湖北省荆州市中考数学模拟试卷(三)(解析版) 题型:解答题

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2012年北京市中考数学模拟试卷(二)(解析版) 题型:解答题

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2012年山东省德州市平原县中考数学一模试卷(解析版) 题型:解答题

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2012年广东省广州市天河区中考数学一模试卷(解析版) 题型:解答题

使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0,可得x=1,我们就说1是函数y=x-1的零点.
己知函数y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数解析式.

查看答案和解析>>

同步练习册答案