精英家教网 > 初中数学 > 题目详情
(2007•资阳)如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.

【答案】分析:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;
(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;
(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.
解答:(1)证明:
证法一:在△ABP与△ADP中,
∵AB=AD∠BAC=∠DAC,AP=AP,
∴△ABP≌△ADP,
∴BP=DP.(2分)
证法二:利用正方形的轴对称性,可得BP=DP.(2分)

(2)解:不是总成立.(3分)
当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,(5分)
说明:未用举反例的方法说理的不得分.

(3)解:连接BE、DF,则BE与DF始终相等,

在图1中,由正方形ABCD可证:
AC平分∠BCD,
∵PE⊥BC,PF⊥CD,
∴PE=PF,∠BCD=90°,
∴四边形PECF为正方形.(7分)
∴CE=CF,
∵∠DCF=∠BCE,
BC=CD,
∴△BEC≌△DFC,
∴BE=DF.(8分)
点评:本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数y=
mx
图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年广东省珠海市中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
y-4
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省襄樊市保康县城关镇中中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
y-4
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源:2009年河北省石家庄市第42中学中考数学二模试卷(解析版) 题型:解答题

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2007年四川省资阳市中考数学试卷(解析版) 题型:解答题

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

同步练习册答案