精英家教网 > 初中数学 > 题目详情
(2011•东台市二模)在四边形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.

思考验证:
(1)求证:DE=DF;
(2)在图1中,若G在AB上且∠EDG=60°,试猜想CE、EG、BG之间的数量关系并证明;
归纳结论:
(3)若题中条件“∠CAB=60°且∠CDB=120°”改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?(只写结果不要证明)
探究应用:
(4)运用(1)(2)(3)解答中所积累的经验和知识,完成下题:如图2,在四边形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的长.
分析:(1)根据已知推出∠C=∠DBF,根据SAS证△DEC≌△DFB即可;
(2)连接AD,根据SSS证△ACD≌△ABD,推出∠CDA=∠BDA=60°,推出∠GDF=60°,得出△DGF≌△DEG,推出FG=EG即可;
(3)根据(1)(2)即可猜出结论;
(4)过C作CM⊥AD交AD的延长线于M,根据全等三角形的性质得出AM=AB,BC=CM,根据结论得出BE+DM=DE,根据勾股定理求出DE,代入即可.
解答:(1)证明:∵∠A+∠C+∠CDB+∠ABD=360°,∠A=60°,∠CDB=120°,
∴∠C+∠ABD=180°,
∵∠ABD+∠DBF=180°,
∴∠C=∠DBF,
在△DEC和△DFB中,
CE=BF
∠C=∠DBF
CD=BD

∴△DEC≌△DFB,
∴DE=DF.
(2)解:CE+BG=EG,
证明:连接DA,
在△ACD和△ABD中
AC=AB
AD=AD
CD=DB

∴△ACD≌△ABD,
∴∠CDA=∠BDA=60°,
∵∠EDG=∠EDA+∠ADG=∠ADG+∠GDB=60°,
∴∠CDE=∠ADG,∠EDA=∠GDB,
∵∠BDF=∠CDE,
∴∠GDB+∠BDF=60°,
在△DGF和△DEG中
DE=DF
∠EDG=∠GDF
DG=DG

∴△DGF≌△DEG,
∴FG=EG,
∵CE=BF,
∴CE+BG=EG.

(3)解:∠EDG=
1
2
(180°-α),

(4)解:过C作CM⊥AD交AD的延长线于M,
在△AMC和△ABC中
∠AMC=∠ABC
∠DAC=∠BAC
AC=AC

∴△AMC≌△ABC,
∴AM=AB.CM=BC,
由(1)(2)(3)可知:DM+BE=DE,
∵AE=3,∠AED=90°,∠DAB=60°,
∴AD=6,
由勾股定理得:DE=3
3

∴DM=AM-AD=AB-6=BE+3-6=BE-3,
∴BE-3+BE=3
3

即BE=
1
2
(3
3
+3).
点评:本题综合考查了全等三角形的性质和判定,含30度角的直角三角形性质,勾股定理等知识点的应用,此题是一道综合性比较强的题目,有一定的难度,能根据题意推出规律是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•东台市二模)油菜花的花粉的直径约为0.0000000296米,用科学记数法表示0.0000000296(保留两个有效数字)是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•东台市二模)由小立方块搭成的一个物体,它的主视图和左视图如图所示,则搭该物体所用的小立方块的个数最少为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•东台市二模)王老师从拉面的制作受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原先段AB上的
1
4
3
4
均变成
1
2
1
2
变成1,等),那么在线段AB上(除A、B)的点中,问第n次操作,恰好被拉到与1重合的点所对应的数之和是
2n-2
2n-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•东台市二模)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.
(1)求证:D为BC的中点;
(2)过点O作OF⊥AC,于F,若AF=
74
,BC=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•东台市二模)已知二次函数y=mx2+(m-3)x-3(m>0)
(1)求证:它的图象与x轴必有两个交点;
(2)这条抛物线与x轴交于两点A、B(A在B左),与y轴交于点C,顶点为D,sin∠ABD=
2
5
5
,⊙M过A、B、C三点,求⊙M的面积;
(3)在(2)的条件下,抛物线上是否存在点P,使PA是⊙M的切线?若存在,求出P点的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案