
(1)证明:过点D作DF⊥BC于F,DF交CE于G,则ADFB是矩形.
∴BF=AD,
∴CF=BC-BF=2AD-AD=AD=BF,即F是BC的中点,
∵FG∥BE,
∴FG是△CBE的中位线,
∴CG=GE,
∵∠CDE=90°,
∴DG是直角△CDE斜边上的中线,
∴DG=GE,
∴∠GDE=∠GED.
∵GD∥AB,
∴∠GDE=∠DEA.
∴∠GED=∠DEA.
又∵∠CDE=∠A=90°,
∴△DEC∽△AED.

∴DE:AE=CE:DE.
∴DE
2=AE•CE.
(2)解:设S
△CDE=2S,S
梯形ABCD=5S,
由(1)知S
△DEF=2S,
又∵S
△ADF:S
△FBC=AD
2:BC
2=1:4,
∴S
△ADF:(S
△ADF+5S)=1:4,
∴S
△ADF=

S,
∴S
△ADE=2S-

S=

S,
∴(

)
2=

=

,
∴DE=

AE,
∵CE=

=6AE,
又AD=

=

AE,
∴BC=2

AE,
∴BE=

=4AE,
∴sin∠BCE=BE:CE=

.
分析:(1)∠CDE=∠A,∠DEA=∠CED对应相等,从而证明三角形相似得出结论.
(2)设S
△CDE=2S,S
梯形ABCD=5S,得出AD=

=

AE,BE=

=4AE,即可得出sin∠BCE=BE:CE的比值即为所求.
点评:本题较难,考查了相似三角形的判定和性质,以及求三角函数值.