精英家教网 > 初中数学 > 题目详情

如图,已知四边形ABCD是四个角都是直角,四条边都相等的正方形,点E在BC上,且CE=数学公式BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下结论:①AB=CM;②AE=AB+CE;③S△AEF=数学公式;④∠AFE=90°,其中正确的结论的个数有


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
分析:由“点F是CD的中点,延长AF与BC的延长线交于点M”知AD=CM,即AB=CM,由边长关系可知AE=EM,F为中点知,EF⊥AM,再根据面积S四边形ABCF=S□ABCD-S△ADF得面积关系.
解答:由题意知,∵点F是CD的中点,∴DF=CF,
又∵∠D=∠FCM,∠DFA=∠CFM,
∴△ADF≌△MCF,
∴CM=AD=AB,
①正确;
设正方形ABCD边长为4,
∵CE=BC=1,
∴BE=3,
∴AE=5,
∴AE=AB+CE,
②正确;
EM=CM+CE=5=AE,
又∵F为AM的中点,
∴EF⊥AM,
④正确,
由CF=2,CE=1得EF=
由DF=2,AD=4得AF=2
∴S△AEF=5,
又S△ADF=4,
∴S四边形ABCF=S□ABCD-S△ADF=12,
③不正确,
故正确的有3个,选C.
点评:本题考查了正方形的性质与全等三角形的判定与性质.注意对角线相互垂直平分相等的综合性质的应用,是基础题,要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

同步练习册答案