精英家教网 > 初中数学 > 题目详情
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点 D作DE∥A'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=
60
60
°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
13
S△ABC
时,求AD的长,并判断此时直线A'C与⊙E的位置关系.
分析:(1)有旋转可得出∠α;
(2)①如图1,点D在AB边上时,m=2;②如图2,点D在AB的延长线上时,m=4.由相似和旋转的性质得出∠A=∠CBE=30°.从而得出m的值;
(3)先求得△ABC的面积,再由△CAD∽△CBE,求得BE,分情况讨论:①当点D在AB边上时,AD=x,BD=AB-AD=2-x,得出直线A′C与⊙E相切.②当点D在AB的延长线上时,AD=x,BD=x-2,得出直线A′C与⊙E相交.
解答:解:(1)当A′B′过点B时,α=60°;

(2)猜想:①如图1,点D在AB边上时,m=2;
②如图2,点D在AB的延长线上时,m=4.
证明:①当0°<α<90°时,点D在AB边上(如图1).
∵DE∥A′B′,
CD
CA′
=
CE
CB′

由旋转性质可知,CA=CA′,CB=CB′,∠ACD=∠BCE.
CD
CA
=
CE
CB

∴△CAD∽△CBE.
∴∠A=∠CBE=30°.
∵点D在AB边上,∠CBD=60°,
∴∠CBD=2∠CBE,即m=2.
②当90°<α<120°时,点D在AB的延长线上(如图2).
与①同理可得∠A=∠CBE=30°.
∵点D在AB的延长线上,∠CBD=180°-∠CBA=120°,
∴∠CBD=4∠CBE,
即m=4;

(3)在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,
∴AB=2,AC=
3
S△ABC=
3
2

由△CAD∽△CBE得
AD
AC
=
BE
BC

∵AD=x,
x
3
=
BE
1
BE=
3
3
x

①当点D在AB边上时,AD=x,BD=AB-AD=2-x,∠DBE=90°.
此时,S=S△BDE=
1
2
BD×BE=
1
2
(2-x)×
3
x
3
=
-
3
x2+2
3
x
6

当S=
1
3
S△ABC
时,
-
3
x2+2
3
x
6
=
3
6

整理,得x2-2x+1=0.
解得x1=x2=1,即AD=1.
此时D为AB中点,∠DCB=60°,∠BCE=30°=∠CBE.(如图3)

∴EC=EB.
∵∠A′CB′=90°,点E在CB′边上,
∴圆心E到A′C的距离EC等于⊙E的半径EB.
∴直线A′C与⊙E相切.
②当点D在AB的延长线上时,AD=x,BD=x-2,∠DBE=90°.(如图2).S=S△BDE=
1
2
BD×BE=
1
2
(x-2)×
3
x
3
=
3
x2-2
3
x
6

当S=
1
3
S△ABC
时,
3
x2-2
3
x
6
=
3
6

整理,得x2-2x-1=0.
解得x1=1+
2
x2=1-
2
(负值,舍去).
AD=1+
2

此时∠BCE=α,而90°<α<120°,∠CBE=30°,
∴∠CBE<∠BCE.
∴EC<EB,即圆心E到A′C的距离EC小于⊙E的半径EB.
∴直线A′C与⊙E相交.
点评:本题考查了直线和圆的位置关系,相似三角形的判定和性质以及旋转的性质,是一道综合题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、把两个一样大的含30°角的直角三角板按如图的方式拼在一起,其中AC平分∠BAF,AD平分∠EAF,请写出所有的等腰三角形:
△ABE,△ACD,△ABC,△ADE

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC为等腰三角形,AB=AC,∠BAC=120°,O为BC边的中点,将-含30°角的直角三角板PQR放置到△ABC上,使得P点与O点重合,将三角板绕着O点旋转,在旋转过程中,PQ、PR分别与直线AB、AC交于点E、F:
(1)当PQ、PR分别与线段AB、AC交于点E、F时(如图a),求证:∠BEO=∠COF;
(2)当PQ、PR分别与直线AB、AC交于点E、F时(如图b、图c),∠BEO与∠COF的大小关系是否改变?请直接写出结论;
(3)在图c中,连接EF,若AB=4,BE=
3
,求CF的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•威海)操作发现
将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.
问题解决
将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.
(1)求证:△CDO是等腰三角形;
(2)若DF=8,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆模拟)小明在玩一副三角板时发现:含45°角的直角三角板的斜边可与含30°角的直角三角板的较长直角边完全重合(如图①).即△C′DA′的顶点A′、C′分别与△BAC的顶点A、C重合.现在,他让△C′DA′固定不动,将△BAC通过变换使斜边BC经过△C′DA′的直角顶点D.
(1)如图②,将△BAC绕点C按顺时针方向旋转角度α(0°<α<180°),使BC边经过点D,则α=
15
15
°.
(2)如图③,将△BAC绕点A按逆时针方向旋转,使BC边经过点D.试说明:BC∥A′C′.
(3)如图④,若AB=
2
,将△BAC沿射线A′C′方向平移m个单位长度,使BC边经过点D,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一位同学用一个含30°角的直角三角板估测学校的旗杆AB的高度,他将30°角的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,则旗杆AB的高度为(  )(
3
≈1.73,结果精确到0.1m)

查看答案和解析>>

同步练习册答案