精英家教网 > 初中数学 > 题目详情
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别交边AB、AC于点E、F.
(1)如图1,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(2)如图2,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
分析:(1)设BP=x,则CP=6-x,由PE⊥AB,∠B=60°,可知∠BPE=30°,故可得出BE及PE的长,再由三角形的面积公式可求出△BPE的面积,同理可求出△CFP的面积,由S四边形AEPF=S△BPE-S△CFP即可得出结论;
(2)先证明△BPE∽△CFP,根据相似三角形的对应边的比相等即可求得BP的长,进而即可求得PE的长.
解答:解:(1)设BP=x,则CP=6-x.
∵PE⊥AB,∠B=60°,
∴∠BPE=30°,
∴BE=
x
2
,PE=
3
2
x,
∴S△BEP=
1
2
BE•PE=
1
2
×
x
2
×
3
2
x=
3
8
x2
同理,在Rt△CFP中,PF=
3
(6-x)
∴S△CFP=
1
2
PC•PF=
1
2
(6-x)×
3
(6-x)=
3
2
(6-x)2
∵△ABC是边长为6的等边三角形,
∴S△ABC=
1
2
×6×3
3
=9
3

设四边形AEPF的面积为y.
∴y=9
3
-
3
8
x2-
3
2
(6-x)2=-
5
3
8
x2+6
3
x-9
3

∵当x=3时,四边形AEPF不存在,
∴自变量x的取值范围为3<x<6;

(2)∵在△BPE中,∠B=60°,
∴∠BEP+∠BPE=120°,
∵∠MPN=60°,
∴∠BPE+∠FPC=120°,
∴∠BEP=∠FPC,
又∵∠B=∠C,
∴△BPE∽△CFP,
BP
CF
=
BE
CP

设BP=x,则CP=6-x.
x
2
=
4
6-x

解得:x=2或4.
当x=2时,在△BEP中,
∵∠B=60°,BE=4,BP=2,
∴PE=2
3

当x=4时,在三角形△BEP中,
∵∠B=60°,BE=4,BP=4,
∴△BEP是等边三角形,
∴PE=4.
∴PE的长为4或2
3
点评:本题考查的是相似形综合题,此题涉及到等边三角形的性质、解直角三角形及相似三角形的判定与性质,有一定的综合性,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);
(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,等边△ABC边长为3cm,将△ABC沿AC向右平移1cm,得到△DEF,则四边形ABEF的周长(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.
求证:△AMN的周长等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC边长为10cm,以AB为直径的⊙O分别交CA、CB于D、E两点,则图中阴影部分的面积(结果保留π)是
 
cm2

查看答案和解析>>

同步练习册答案