精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A、B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为( )

A.
B.
C.
D.

【答案】A
【解析】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;
②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,
所以S与t成一次函数关系.故排除C.
故选A
【考点精析】利用函数的图象对题目进行判断即可得到答案,需要熟知函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④当1<x<3时,x2+(b﹣1)x+c<0.
其中正确的个数为(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是(
A.直线的一部分
B.圆的一部分
C.双曲线的一部分
D.抛物线的一部分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是(
A.极差是47
B.众数是42
C.中位数是58
D.每月阅读数量超过40的有4个月

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.
(1)求舟山与嘉兴两地间的高速公路路程;
(2)两座跨海大桥的长度及过桥费见下表:

大桥名称

舟山跨海大桥

杭州湾跨海大桥

大桥长度

48千米

36千米

过桥费

100元

80元

我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:

养殖种类

成本(万元/亩)

销售额(万元/亩)

甲鱼

2.4

3

桂鱼

2

2.5


(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB= ,AC= ,BC=1.
(1)求证:∠A≠30°;
(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分

分组

家庭用水量x/吨

家庭数/户

A

0≤x≤4.0

4

B

4.0<x≤6.5

13

C

6.5<x≤9.0

D

9.0<x≤11.5

E

11.5<x≤14.0

6

F

x>4.0

3

根据以上信息,解答下列问题

(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;
(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;
(3)家庭用水量的中位数落在组;
(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;
②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.

查看答案和解析>>

同步练习册答案