精英家教网 > 初中数学 > 题目详情
化简(1+
4
a-2
a
a-2
的结果是(  )
A.
a+2
a
B.
a
a+2
C.
a-2
a
D.
a
a-2
原式=
a-2+4
a-2
a-2
a
=
a+2
a

故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.求乙队单独完成这项工程需要多少天?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简、再求值:求代数式
x-3
3x2-6x
÷(x+2-
5
x-2
)
的值,其中x是一元二次方程x2+3x-2=0的根.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简,再求值:(
1
x+1
+
x2-2x+1
x2-1
x-1
x+1
,其中x=
2
-1.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简,再求值:(
3x+2
x2-1
)+
x
x+1
,其中x=(-1)2012+tan60°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

当a=
12
5
,b=
6
5
时,求
a-b
a+3b
+
a2-b2
a2+6ab+9b2
-
b
a+b
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

化简(1-
2
x+1
1
x2-1
的结果是(  )
A.
1
(x+1)2
B.
1
(x-1)2
C.(x+1)2D.(x-1)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定它们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知小丽和小颖购买同一种商品的平均价格分别为
a+b
2
元/千克和
2ab
a+b
元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.
(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).

联系拓广
小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简,再求值:
(1)(a-
2ab-b2
a
)•
a2+ab
a2-b2
,其中a=1,-3<b<
3
且b为整数;
(2)
m-3
3m2-6m
÷(m+2-
5
m-2
)
,其中m是方程x2+3x-1=0的根.
(3)化简分式(
x
x-1
-
x
x2-1
x2-x
x2-2x+1
,并从-1≤x≤3中选一个你认为合适的整数x代入求值.

查看答案和解析>>

同步练习册答案