B
分析:此题要通过构造全等三角形来解;过B作DE的平行线,交AC于F;由于∠AED=∠CAB=60°,因此△ADE是等边三角形,则∠BDE=120°,联立∠CDB、∠CDE的倍数关系,即可求得∠CDE的度数;然后通过证△EDC≌△FCB,得到∠CDE=∠DCB+∠DCE,联立由三角形的外角性质得到的∠CDE+∠DCE=∠ADE=60°,即可求得∠DCB的度数.
解答:
解:∠CAB=60°,∠AED=60°,
∴△ADE是正三角形.
作BF∥DE交AC于F,
∴△ABF∽△ADE,
∴△ADF是等边三角形,
则BD=EF,
从而EC=DE+BD=AB=BF,DE=FC,
又∠1=∠2=120°,
∴△EDC≌△FCB,
∴θ+x=φ;
∵∠CDB=2φ,∠BDE=120°,
∴φ=40°,
θ+x=40°;
∵θ+φ=θ+40°=60°
∴θ=20°,
得:x=20°.
故选B.
点评:此题考查了全等三角形的判定和性质、三角形的外角性质等知识,正确画出图形,并构造出全等三角形是解决问题的关键.