精英家教网 > 初中数学 > 题目详情
19.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是(  )
A.B.C.D.

分析 作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=-tanB•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.

解答 解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,
∵△ABC为等腰三角形,
∴∠B=∠C,BD=CD,
当点F从点B运动到D时,如图1,
在Rt△BEF中,∵tanB=$\frac{EF}{BF}$,
∴y=tanB•t(0≤t≤m);
当点F从点D运动到C时,如图2,
在Rt△CEF中,∵tanC=$\frac{EF}{CF}$,
∴y=tanC•CF
=tanC•(2m-t)
=-tanB•t+2mtanB(m≤t≤2m).
故选B.

点评 本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO•OQ=y.
(1)①延长BC交ED于点M,则MD=2,DC=1;
②求y关于x的函数解析式;
(2)当a≤x≤$\frac{1}{2}$(a>0)时,9a≤y≤6b,求a,b的值;
(3)当1≤y≤3时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=(  )
A.35°B.45°C.50°D.55°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=$\frac{k}{x}$(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为$\frac{15}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在?ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=$\frac{7}{8}$,求线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)

(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为(  )
A.6B.12C.20D.24

查看答案和解析>>

同步练习册答案