精英家教网 > 初中数学 > 题目详情
如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E精英家教网,连接BO、ED,有BO∥ED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=
35
,求EF的长.
分析:(1)连接OE,证OE⊥AB即可.通过证明△BOC≌△BOE得证;
(2)根据垂径定理,EF=2EG,所以求出EG的长即得解.连接CE,则∠CED=90°,∠ECD=∠F.CD=10.根据三角函数可求EG得解.
解答:精英家教网(1)证明:连接OE.
∵ED∥OB,
∴∠1=∠2,∠3=∠OED.
又OE=OD,
∴∠2=∠OED,
∴∠1=∠3.
又OB=OB,OE=OC,
∴△BCO≌△BEO.(SAS)
∴∠BEO=∠BCO=90°,即OE⊥AB.
∴AB是⊙O切线.

(2)解:连接CE,
∵∠F=∠4,CD=2•OC=10;
由于CD为⊙O的直径,∴在Rt△CDE中有:
ED=CD•sin∠4=CD•sin∠DFE=10×
3
5
=6

CE=
CD2-ED2
=
102-62
=8

在Rt△CEG中,
EG
CE
=sin∠4=
3
5

∴EG=
3
5
×8=
24
5

根据垂径定理得:EF=2EG=
48
5
点评:此题考查了切线的判定、垂径定理及解直角三角形等知识点,综合性很强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB和∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•郧县三模)如图,⊙O的圆心在坐标原点,⊙O与x轴正半轴交于点B,延长OB至点A使AB=OB,过点A作⊙O的切线AC,切点为C,P为⊙O上一点(不在弧BC上),则cos∠BPC的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•中江县二模)如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,且BO∥ED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)连接CE,求证:AE2=AD•AC;
(3)若⊙O的半径为5,sin∠DFE=
35
,求EF的长.

查看答案和解析>>

同步练习册答案