精英家教网 > 初中数学 > 题目详情
已知:点P是等边△ABC内任意一点,它到三边的距离分别为h1、h2、h3,且满足h1+h2+h3=6,则S△ABC=
 
分析:根据等边三角形的面积可以得到三角形的高等于6,然后根据等边三角形的高、底边的一半以及一条边长构成含30°角的直角三角形,然后求出等边三角形的边长,再根据面积公式求解即可.
解答:精英家教网解:如图,在等边△ABC中,AB=BC=AC,
过点A作AD⊥BC,垂足为D,
则BD=CD=
1
2
BC=
1
2
AB,
∵S△ABC=
1
2
AB•h1+
1
2
BC•h2+
1
2
AC•h3=
1
2
BC•AD,
∴AD=h1+h2+h3=6,
在Rt△ABD中,AB2=BD2+AD2
即AB2=(
1
2
AB)2+62
AB=4
3

∴S△ABC=
1
2
BC•AD=
1
2
×4
3
×6=12
3

故答案为:12
3
点评:本题考查了等边三角形的三条边都相等的性质,三线合一的性质,勾股定理的运用,求出等边三角形的高线的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•金山区一模)如图,已知:点P是等边△ABC的重心,PD=2,那么AB=
4
3
4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.精英家教网
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.
(1)说明△ABD≌△ACE的理由;  
(2)△ADE是什么三角形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
数学公式
∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.

查看答案和解析>>

同步练习册答案