精英家教网 > 初中数学 > 题目详情
阅读材料:如图,AB=AC,BD=CD,则可证得AD平分∠BAC,据此我们引出了“角平分线”的尺规作法.

问题:如图,AD=AE,AB=AC,也可证得AP平分∠BAC,据此我们能否引出了“角平分线”的第二种尺规作法呢?请在图中尝试着画出∠α的平分线.
分析:设∠α的顶点为O,根据题目信息,在∠α的两边上分别截取OA=OB,OC=OD,然后连接AD、BC,相交于点P,作射线OP,即为∠α的平分线.
解答:解:能引出“角平分线”的第二种尺规作法.
如图所示,OP即为∠α的角平分线.
点评:本题考查了复杂作图,主要涉及作角的平分线,读懂题目信息,理解作图方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:
(1)如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是
 

精英家教网
(2)阅读材料:如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
1
2
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
精英家教网
解答下列问题:
如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
①求抛物线和直线AB的解析式;
②点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
③点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使S△PAB=
9
8
S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:如图①,在平面上,给定了半径为r的⊙O,对于任意一点P,在射线OP上取一点Q,使得OP•OQ=r2,这种把点P变为点Q的变换叫做反演变换,点P与点Q叫做互为反演点.
解答问题:如图②,⊙O内、外各有一点A和B,它们的反演点分别为C和D,连接AB、CD,试判断∠B、∠C之间的关系,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:如图,AB=AC,BD=CD,则可证得AD平分∠BAC,据此我们引出了“角平分线”的尺规作法.

问题:如图,AD=AE,AB=AC,也可证得AP平分∠BAC,据此我们能否引出了“角平分线”的第二种尺规作法呢?请在图中尝试着画出∠α的平分线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:如图,AB=AC,BD=CD,则可证得AD平分∠BAC,据此我们引出了“角平分线”的尺规作法.

精英家教网

问题:如图,AD=AE,AB=AC,也可证得AP平分∠BAC,据此我们能否引出了“角平分线”的第二种尺规作法呢?请在图中尝试着画出∠α的平分线.

精英家教网

查看答案和解析>>

同步练习册答案