精英家教网 > 初中数学 > 题目详情
如图:△ABC中,∠C=90°,AC=8cm,AB=10cm,点P由点C出发以每秒2cm的速度沿线段CA向点A运动(不运动到A点),⊙O的圆心在BP上,且⊙O分别与AB、AC相切,当点P运动2秒钟时,⊙O的半径是______.
若右图所示,过O作OD⊥AC于D,再过O作OE⊥AB于E,

设OD=x,DP=y,
∵OD⊥AC,
∴OP=
x2+y2

在Rt△ABC中,BC=
AB2-AC2
=6,
同理可得BP=
52

∴OB=BP-OP=
52
-
x2+y2

BE=10-AE=10-(4+y)=6-y,
又∵OE2+BE2=OB2
∴x2+(6-y)2=(
52
-
x2+y2
2
即16-4
13
x2+y2
+12y=0①,
∵OD⊥AC,BC⊥AC,
∴ODBC,
∴△ODP△BCP,
∴DP:CP=OD:BC,
∴y:4=x:6,
∴y=
2
3
x②,
把②代入①,得
28
3
x=16,
∴x=
12
7

故答案是
12
7
cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AC为直径的圆分别交AB和BC于E、D两点,AD与EC交于G点.过点D作DF⊥AB交AB于F,交AC的延长线于H.
(1)求证:FH为⊙O的切线;
(2)若AC=6,BC=4,求DG.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的切线,切点为A、B,若OP=4,PA=2
3
,则∠AOB的度数为(  )
A.60°B.90°C.120°D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,∠A=60°,BC=4cm,以点C为圆心,以3cm长为半径作圆,则⊙C与AB的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,交AC于点E,过点D作DF⊥AC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若过A点且与BC平行的直线交BE的延长线于G点,连接CG.当△ABC是等边三角形时,求∠AGC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA,PB分别切⊙O于点A和点B,C是
AB
上任一点,过C的切线分别交PA,PB于D,E.若⊙O的半径为6,PO=10,则△PDE的周长是(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是(  )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,则∠DAB=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为(  )
A.18πcmB.16πcmC.20πcmD.24πcm

查看答案和解析>>

同步练习册答案