精英家教网 > 初中数学 > 题目详情
(2013•黔西南州)如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C
(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.
解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
将点A(-2,0),B(-3,3),O(0,0),代入可得:
4a-2b+c=0
9a-3b+c=3
c=0

解得:
a=1
b=2
c=0

故函数解析式为:y=x2+2x.

(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3).

(3)存在.
如图:∵B(-3,3),C(-1,-1),
根据勾股定理得:BO2=18,CO2=2,BC2=20,
∵BO2+CO2=BC2
∴△BOC是直角三角形,
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则
AM
BO
=
PM
CO

即x+2=3(x2+2x),
得:x1=
1
3
,x2=-2(舍去).
当x=
1
3
时,y=
7
9
,即P(
1
3
7
9
),
②若△PMA∽△BOC,则
AM
CO
=
PM
BO

即:x2+2x=3(x+2),
得:x1=3,x2=-2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P(
1
3
7
9
)或(3,15).
点评:本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黔西南州)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔西南州)已知
a-1
+|a+b+1|=0
,则ab=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔西南州)|-3|的相反数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黔西南州)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0,其中错误的有(  )

查看答案和解析>>

同步练习册答案