精英家教网 > 初中数学 > 题目详情

若直角三角形中,一斜边比一直角边大2,且另一直角边长为6,则斜边为________.

10
分析:设一条直角边为a,则斜边为a+2,再根据勾股定理求出a的值即可.
解答:设一条直角边为a,则斜边为a+2,
∵另一直角边长为6,
∴(a+2)2=a2+62,解得a=8,
∴a+2=8+2=10.
故答案为:10.
点评:本题考查的是勾股定理,根据题意设出直角三角形的斜边及直角边的长是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,现将一张等腰直角三角形纸片ABC放在第二象限,斜靠在精英家教网两坐标轴上,点B的坐标为(-3,1),且抛物线y=ax2+ax-4a经过点B.
(Ⅰ)求抛物线的解析式;
(Ⅱ)求点A和点C的坐标;
(Ⅲ)以AC所在直线为对称轴,将△ABC折叠,问点B的对称点B1是否落在抛物线上?再以AC的中点为对称中心,将△ABC作中心对称变换,这时点B的对称点B2是否落在抛物线上?若在,求出它们的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片ABC折叠,使A与C重合,这时DE为折底,△CBE为等腰三角形,再将纸片沿△CBE的对称轴EF折叠,这时得到一个折叠而成的无缝隙、无重叠的矩形,这个矩形称为“折得矩形”.精英家教网
(1)如图②,正方形网格中的△ABC能折成“折得矩形”吗?,若能,请在图②中画出折痕;
(2)如图③,正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且由△ABC折成的“折得矩形”为正方形;
(3)如果一个三角形折成的“折得矩形”为正方形,那么它必须满足的条件是
 

(4)若一个四边形能折成“折得矩形”,那么它必须满足的条件是
 

查看答案和解析>>

科目:初中数学 来源:2009-2010学年天津市河西区九年级(上)期末数学试卷(解析版) 题型:解答题

如图所示,在平面直角坐标系中,现将一张等腰直角三角形纸片ABC放在第二象限,斜靠在两坐标轴上,点B的坐标为(-3,1),且抛物线y=ax2+ax-4a经过点B.
(Ⅰ)求抛物线的解析式;
(Ⅱ)求点A和点C的坐标;
(Ⅲ)以AC所在直线为对称轴,将△ABC折叠,问点B的对称点B1是否落在抛物线上?再以AC的中点为对称中心,将△ABC作中心对称变换,这时点B的对称点B2是否落在抛物线上?若在,求出它们的坐标;若不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,将一张直角三角形纸片折叠,使点与点重合,这时为折痕,为等腰三角形;再继续将纸片沿的对称轴折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”

 


图①                         图②                 图③

(1)如图②,正方形网格中的能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;

(2)如图③,在正方形网格中,以给定的为一边,画出一个斜三角形,使其顶点在格点上,且折成的“叠加矩形”为正方形;

(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?

查看答案和解析>>

同步练习册答案