精英家教网 > 初中数学 > 题目详情

在△ABC中,∠ACB=90°,AC=4,BC=3,在△ABD中,BD=12,AD=13,
求△ABD的面积.

解:∵∠ACB=90°,AC=4,BC=3,
∴AB2=AC2+CB2
∴AB=5.
∵BD=12,AD=13,
∴AD2=BD2+AB2
∴∠ABD=90°,
∴△ABD的面积=×AB×BD=30.
答:△ABD的面积为30.
分析:先根据∠ACB=90°及AC、BC的长根据勾股定理可求出AB的长,再根据勾股定理的逆定理判断出△ABD的形状,利用三角形的面积公式即可求解.
点评:本题考查的是勾股定理及勾股定理的逆定理,能根据勾股定理的逆定理判断出△ABD的形状是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案