精英家教网 > 初中数学 > 题目详情

如图,在?ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是


  1. A.
    BF=数学公式DF
  2. B.
    四边形AECD是等腰梯形
  3. C.
    S△FAD=2S△FBE
  4. D.
    ∠AEB=∠ADC
C
分析:根据已知条件即可推出△BEF∽△DAF,推出A项为正确,已知条件可以推出四边形AECD为等腰梯形,推出B项正确,结合平行四边形的性质,可以推出D项正确,所以C项是错误的.
解答:∵平行四边形ABCD中,
∴△BEF∽△DAF,
∵E是BC的中点,
∴BF:FD=BE:AD,
∴BF=DF,
故A项正确;
∵∠AEC=∠DCE,
∴四边形AECD为等腰梯形,
故B项正确;
∴∠AEB=∠ADC.
∵△BEF∽△DAF,BF=DF,
∴S△AFD=4S△EFB
故C项不正确;
∵∠AEB+∠AEC=180
∠ADC+∠C=180
而四边形AECD为等腰梯形,
∴∠AEC=∠C,
∴∠AEB=∠ADC,
因此D项正确.
故选C.
点评:本题主要考查相似三角形的判定及性质、等腰梯形的判定、平行四边形的性质,解题的关键在于找到相似三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案