精英家教网 > 初中数学 > 题目详情
探索;用方程解答问题
A、B两地间相距a(km),小明以15km/h的速度骑自行车从A地途经B地到C地,小亮以30km/h的速度开汽车从A地到B地,小明先出发1h,小亮几小时以后在A、B之间追上小明?题中的条件a(km)对此题有作用吗?试加以说明.
分析:设小亮出发x小时后追上小明,由题意得等量关系:小亮x小时行驶的路程=小明(x+1)小时行驶的路程,根据等量关系列出方程,再解方程即可.
解答:解:设小亮出发x小时后追上小明,由题意得:
30x=15(x+1),
解得x=1,
答:小亮1小时以后在A、B之间追上小明.
题中的条件a(km)对此题有作用.如果a≥30,则小亮是在A、B之间追上小明;如果a<30,则小亮不能在A、B之间追上小明.
点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:

解答题
①当m取何值时,关于x的方程:3x-2=4与5x-1=-m的解相等?
②一堆小麦用8个编织袋来装,以每袋55千克为标准,超过的记作为正数,不足的记作为负数,现记录如下:(单位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)这堆小麦共重多少千克?
(2)若每千克小麦的售价为1.2元,则这堆小麦可卖多少钱?
③探索规律:观察下面由“※”组成的图案和算式,解答问题:精英家教网
(1)请猜想1+3+5+7+9+…+19=
 

(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 

(3)请用上述规律计算:103+105+107+…+2003+2005.
④在左边的日历中,用一个正方形任意圈出二行二列四个数,
精英家教网精英家教网
若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.
精英家教网
(1)分别用含a的代数式表示b,c,d这三个数.
(2)求这四个数的和(用含a的代数式表示,要求合并同类项化简)
(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.(要求列方程解答)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

学生甲:老师,原方程可整理为
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通吗?
老师:很好,当然可以这样做.
再仔细观察,看看这个方程有什么特点?还可以怎样解答?
学生乙:老师,我发现
x
x-1
是整体出现的!
老师:很好,我们把
x
x-1
看成一个整体,用y表示,即可设
x
x-1
=y,那么原方程就变为y2-4y+4=0.
全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y-2)2=0
老师:大家真会观察和思考,太棒了!显然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!
老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程(组):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

科目:初中数学 来源:河北省期末题 题型:解答题

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:
(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:

查看答案和解析>>

同步练习册答案