如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、F,则EF的长【 】
![]()
A. 等于4
B. 等于4
C. 等于6 D. 随P点
C。
【解析】圆周角定理,三角形内角和定理,相似三角形的判定和性质,垂径定理,勾股定理。
【分析】 连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,
∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,
![]()
∴OA=4+5=9,0B=5﹣4=1。
∵AB是⊙M的直径,∴∠APB=90°。
∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°。
∵∠PBA=∠OBD,∴∠PAB=∠ODB。
∵∠APB=∠BOD=90°,∴△OBD∽△OCA。∴
,即
,即r2﹣x2=9。
由垂径定理得:OE=OF,
由勾股定理得:OE2=EN2﹣ON2=r2﹣x2=9。∴OE=OF=3,∴EF=2OE=6。
故选C。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 5 |
| 16 |
| 5 |
| 16 |
| 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com