精英家教网 > 初中数学 > 题目详情
19.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为(  )
A.10°B.20°C.30°D.40°

分析 根据平行线的性质即可得到结论.

解答 解:如图,过E作EF∥直线a,
则EF∥直线b,
∴∠3=∠1,∠4=∠2,
∴∠1=60°-∠2=10°,
故选A.

点评 本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.下表是世界人口增长趋势数据表:
 年份x 1960 1974 1987 1999 2010
 人口数量y(亿) 30 40 50 60 69
(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;
(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;
(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.一元一次方程3x-3=0的解是(  )
A.x=1B.x=-1C.x=$\frac{1}{3}$D.x=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.二次函数y=ax2+bx+c的图象如图所示,则下列结论不正确的是(  )
A.a<0B.c>0C.a+b+c>0D.b2-4ac>0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于A(-3,2),B(2,n).
(1)求反比例函数y=$\frac{k}{x}$的解析式;
(2)求一次函数y=ax+b的解析式;
(3)观察图象,直接写出不等式ax+b<$\frac{k}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在下列条件中,能够判定一个四边形是平行四边形的是(  )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组对角相等
C.一组对边平行,一条对角线平分另一条对角线
D.一组对边相等,一条对角线平分另一条对角线

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,已知抛物线C1:y=$\frac{3}{2}{x}^{2}+6x+2$的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.
(1)结合图象,直接写出不等式$\frac{3}{2}$x2+6x+2<kx+b的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3-4q的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(3)如图3,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,若AM=4,求△BMG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.某射击运动员练习时的10次成绩如下:6,7,7,7,8,8,9,9,9,10,则这组数据的方差为1.4.

查看答案和解析>>

同步练习册答案