精英家教网 > 初中数学 > 题目详情
求证:三角形三个内角的和等于180°.
分析:画出图形,写出已知,求证,过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.
解答:已知:△ABC,如图:
求证:∠A+∠B+∠C=180°
证明:过点A作直线MN∥BC,
∵MN∥BC,
∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),
∵∠MAB+∠BAC+∠NAC=180°(平角的定义),
∴∠B+∠BAC+∠C=180°(等量代换),
即:三角形三个内角的和等于180°.
点评:本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用反证法证明“三角形三个内角中,至少有一个内角小于或等于60°”.
已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个内角小于或等于60°.
证明:假设求证的结论不成立,那么
三角形中所有角都大于60°
三角形中所有角都大于60°

∴∠A+∠B+∠C>
180°
180°

这与三角形
的三内角和为180°
的三内角和为180°
相矛盾.
∴假设不成立
三角形三内角中至少有一个内角小于或等于60度
三角形三内角中至少有一个内角小于或等于60度

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江建德李家镇初级中学八年级下学期期中考试数学卷(带解析) 题型:解答题

用反证法证明“三角形三个内角中,至少有一个内角小于或等于60º”。
已知:∠A,∠B,∠C是△ABC的内角。
求证:∠A,∠B,∠C中至少有一个小于或等于60º。
证明:假设求证的结论不成立,即      
∴∠A+∠B+∠C>    
这与三角形    相矛盾。
∴假设不成立
    

查看答案和解析>>

科目:初中数学 来源:2014届浙江建德八年级下学期期中考试数学卷(解析版) 题型:解答题

用反证法证明“三角形三个内角中,至少有一个内角小于或等于60º”。

已知:∠A,∠B,∠C是△ABC的内角。

求证:∠A,∠B,∠C中至少有一个小于或等于60º。

证明:假设求证的结论不成立,即      

∴∠A+∠B+∠C>    

这与三角形    相矛盾。

∴假设不成立

    

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

用反证法证明“三角形三个内角中,至少有一个内角小于或等于60°”.
已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个内角小于或等于60°.
证明:假设求证的结论不成立,那么________
∴∠A+∠B+∠C>________
这与三角形________相矛盾.
∴假设不成立
∴________.

查看答案和解析>>

同步练习册答案