【题目】如图,在边长为的正方形中,点在上从向运动,连接交于点.
()试证明:无论点运动到上何处时,都有≌.
()若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点运动到什么位置时, 恰为等腰三角形.
【答案】()证明见解析;()。
【解析】分析:(1)根据正方形的四条边都相等可得AD=AB,对角线平分一组对角可得∠DAQ=∠BAQ=45°,然后利用“边角边”证明△ADQ和△ABQ全等;(2)分①AQ=DQ时,点B、P重合,②AQ=AD时,根据等边对等角可得∠ADQ=∠AQD,再求出正方形的对角线AC的长,再求出CQ,然后根根据两直线平行,内错角相等求出∠CPQ=∠ADQ,从而得到∠CQP=∠CPQ,根据等角对等边可得CP=CQ,从而得到点P的位置,③AD=DQ时,点C、P、Q三点重合.
本题解析:
()如图,∵在正方形中,无论运动到何处,
都有, .
∴在和中, .
∴≌.
()为等腰三角形.
如图, 时,此时为正方形.
的中心,此时点与点重合.
②如图, 时,由等边对等角得: .
∴, .
∴
∵
∵
∴
∴.
③如图, 时,
此时、、三点重合.
综上所述:当运动到①点位置②处(上)③点位置时, 为等腰三角形.
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.
(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】概念学习
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,
(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作a,读作“a的圈n次方”.
初步探究
(1)直接写出计算结果:2③=________, ⑤=________;
(2)关于除方,下列说法错误的是________
A.任何非零数的圈2次方都等于1; B.对于任何正整数n,1=1; C.3④=4③ D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________; ⑩=________.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
(3)算一算: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的线段AD(除去端点A、D)上一动点,EF⊥BC于点F.
(1)若∠B=40°,∠DEF=10°,求∠C的度数.
(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一人患了某种流感,在每轮传染中平均一个人传染x个人,在进入第二轮传染之前有两人被及时隔离治疗并治愈,若两轮传染后还有24人患流感,则x=______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com