精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,AD⊥BC于D,AB=15,BD=9,CD=5,则⊙O的半径________.


分析:根据勾股定理列式求出AD、AC,连接AO并延长交⊙O于E,连接CE,根据同弧所对的圆周角相等可得∠B=∠E,根据直径所对的圆周角是直角可得∠ACE=90°,然后求出△ABD和△AEC相似,再根据相似三角形对应边成比例列式求解即可得到AE的值,从而得到圆的半径.
解答:解:∵AD⊥BC于D,AB=15,BD=9,
∴在Rt△ABD中,AD===12,
∵CD=5,
∴在Rt△ACD中,AC===13,
如图,连接AO并延长交⊙O于E,连接CE,
则∠B=∠E,∠ACE=90°,
∴∠ADB=∠ACE,
∴△ABD∽△AEC,
=
=
解得AE=
∴⊙O的半径为AE=×=
故答案为:
点评:本题考查了相似三角形的判定与性质,圆周角定理,直径所对的圆周角是直角的性质,作以直径为斜边的相似三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案