精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E.
(1)如图①,当∠A为锐角时,连接BE,试判断∠BAC与∠CBE的数量关系,并证明你的结论.
(2)图①中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图②,CA的延长线与⊙O相交于点E,请问:∠BAC与∠CBE的关系是否与(1)中你得出的关系相同?若相同,请加以证明;若不同,请说明理由.
分析:(1)连接AD,根据直径所对的圆周角是直角,得AD⊥BC,又由AB=AC,根据等腰三角形的三线合一,得AD平分∠BAC,结合圆周角定理,即可得∠BAC=2∠CBE;
(2)连接AD.根据等腰三角形的三线合一和圆内接四边形的性质,即可证明∠BAC=2∠CBE.
解答:解:(1)∠BAC与∠CBE的关系是:∠BAC=2∠CBE.
理由如下:连接AD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BC.
又∵AB=AC,
∴∠BAD=∠CAD=
1
2
∠BAC.
又∵∠CAD=∠CBE,
∴∠BAC=2∠CBE.

(2)相同.
理由如下:连接AD.
∵AB为直径,
∴AD⊥BC,
又∵AB=AC,
∴∠BAD=∠CAD=
1
2
∠BAC,
∵∠CAD+∠DAE=180°,∠CBE+∠DAE=180°,
∴∠CAD=∠CBE,
∴∠BAC=2∠CBE.
点评:此题考查了圆周角定理、等腰三角形的性质以及圆的内接四边形的性质.此题难度不大,解题的关键是准确作出辅助线,掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案