精英家教网 > 初中数学 > 题目详情
8.以下图形中对称轴的数量小于3的是(  )
A.B.C.D.

分析 根据对称轴的概念求解.

解答 解:A、有4条对称轴;
B、有6条对称轴;
C、有4条对称轴;
D、有2条对称轴.
故选D.

点评 本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6-2$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,$\frac{OA}{OB}$=$\frac{3}{4}$.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=$\frac{k}{x}$的图象过点C.当以CD为边的正方形的面积为$\frac{2}{7}$时,k的值是(  )
A.2B.3C.5D.7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将0.00007用科学记数法表示为(  )
A.7×10-6B.70×10-5C.7×10-5D.0.7×10-6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元
(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=-x2+3x-2的“旋转函数”.
小明是这样思考的:由函数y=-x2+3x-2可知,a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)写出函数y=-x2+3x-2的“旋转函数”;
(2)若函数y=-x2+$\frac{4}{3}$mx-2与y=x2-2nx+n互为“旋转函数”,求(m+n)2015的值;
(3)已知函数y=-$\frac{1}{2}$(x+1)(x-4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=-$\frac{1}{2}$(x+1)(x-4)互为“旋转函数.”

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.公司决定购买6台机器用于生产,现有甲乙两种机器供选择,甲每台7万元,乙每台5万元,经过预算买机器不能超过34万元,问该公司有几种购买方案,有哪几种?

查看答案和解析>>

同步练习册答案