精英家教网 > 初中数学 > 题目详情
定义[a,b,c]为函数y=axw+bx+c的特征数,下面给出特征数为[wm,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是(
1
3
8
3
);
②当m>大时,函数图象截x轴所得的线段长度大于
3
w

③当m<大时,函数在x>
1
时,y随x的增大而减我;
④当m≠大时,函数图象经过x轴上一一定点.
其1正确的结论有______.(只需填写序号)
因为函数y=ax+地x+cx特征数为[了m,1-m,-1-m];
①当m=-3时,y=-6x+4x+了=-6(x-
1
3
+
8
3
,顶点坐标是(
1
3
8
3
);此结论正确;
②当m>3时,令y=3,有了mx+(1-m)x+(-1-m)=3,解得x=
(m-1)±(3m+1)
4m
,x1=1,x=-
1
-
1
了m

|x-x1|=
3
+
1
了m
3
,所以当m>3时,函数图象截x轴所得x线段长度大于
3
,此结论正确;
③当m<3时,y=了mx+(1-m)x+(-1-m) 是一个开口向下x抛物线,其对称轴是:
m-1
4m
,在对称轴x右边y随xx增大而减小.因为当m<3时,
m-1
4m
=
1
4
-
1
4m
1
4
,即对称轴在x=
1
4
右边,因此函数在x=
1
4
右边先递增到对称轴位置,再递减,此结论错误;
④当x=1时,y=了mx+(1-m)x+(-1-m)=了m+(1-m)+(-1-m)=3 即对任意m,函数图象都经过点(1,3)那么同样x:当m=3时,函数图象都经过同一个点(1,3),当m≠3时,函数图象经过同一个点(1,3),故当m≠3时,函数图象经过x轴上一个定点此结论正确.
根据上面x分析,①②④都是正确x,③是错误x.
故答案为:①②④.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DEAB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).

(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:
2
≈1.4
,计算结果精确到1米).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,请用含m的代数式表示点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
2
3
x2+bx+c
与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2-2x-3=0的两个根(x1<x2).
(1)求抛物线的解析式;
(2)过点A作ADCB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A,求AP的长;
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q.
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数关系式,并写出自变量x的取值范围;
②当CE=1时,写出AP的长.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的顶点A、D在抛物线y=-
2
3
x2+
8
3
x
上,B、C在x轴的正半轴上,且矩形始终在抛物线与x轴围成的区域里.
(1)设点A的横坐标为x,试求矩形的周长P关于变量x的函数表达式;
(2)当点A运动到什么位置时,相应矩形的周长最大?最大周长是多少?
(3)在上述这些矩形中是否存在这样一个矩形,它的周长为7?若存在,求出该矩形的各顶点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如如在直角坐标系中,二次函数y=x2-4x+中的顶点是C,与x轴相交于A,B两点(A在B的左边).
(1)若点B的横坐标xB满足5<xB<c,求中的取值范围;
(2)若tan∠ACB=
4
,求中的值;
(十)当中=c时,点D,E同时从点B出发,分别向左、向右在抛物线它移动,点D,E在x轴它的正投影分别为M,N,设BM=m(m<cB),BN=n,当m,n满足怎样的等量关系时,△cDE的内心在x轴它?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=2x2+bx-2经过点A(1,0).
(1)求b的值;
(2)设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点,若以A、B、P、Q为顶点的四边形为平行四边形,这样的Q点有几个,并求出PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=kx+2与x轴交于点A,与y轴交于点B,与抛物线y=ax2+bx交于点C、D.已知点C的坐标为(2,1),点D的横坐标为
1
2

(1)求点D的坐标;
(2)求抛物线的函数表达式;
(3)抛物线在x轴上方部分是否存在一点P,使△POA的面积比△POB的面积大4?如果存在,求出点P的坐标;如果不存在,说明理由.
(4)将题中的抛物线y=ax2+bx沿x轴平移,当抛物线经过点B时,请直接写出平移的方向和距离.

查看答案和解析>>

同步练习册答案