精英家教网 > 初中数学 > 题目详情

作业宝一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB.
求:                                                                                          
(1)这两个函数的表达式;
(2)△AOB的面积S.

解:(1)设直线OA的解析式为y=kx,
把A(3,4)代入得4=3k,解得k=
所以直线OA的解析式为y=x;
∵A点坐标为(3,4),
∴OA==5,
∴OB=OA=5,
∴B点坐标为(0,-5),
设直线AB的解析式为y=ax+b,
把A(3,4)、B(0,-5)代入得,解得
∴直线AB的解析式为y=3x-5;

(2)△AOB的面积S=×5×3=
分析:(1)先根据待定系数法确定正比例函数解析式为y=x;再利用两点间的距离公式计算出OA=5,则B点坐标为(0,-5),然后根据待定系数法确定直线AB的解析式;
(2)根据三角形面积公式求解.
点评:本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式及两直线与x轴围成三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个正比例函数与一个反比例函数的图象交于点(-1,
3
),则该反比例函数的关系式为
 
,它们的另一个交点的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一个正比例函数与一个反比例函数图象交于点P(2,6),则这个正比例函数的关系式是
 
,这个反比例函数的关系式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,一个正比例函数与一个一次函数的图象相交于点A(-2,3),且一次函数的图象与y轴相交于点B.
(1)求这两个函数的关系式;
(2)求△AOB的面积.

查看答案和解析>>

同步练习册答案