精英家教网 > 初中数学 > 题目详情
(1999•天津)同一个圆的内接正六边形和外切正六边形的周长的比等于( )
A.3:4
B.:2
C.2:
D.1:2
【答案】分析:先根据题意画出图形,设圆的半径为1,分别求出其内接正六边形和外切正六边形的边长即可求解.
解答:解:设圆的半径为1,
如图(1),
连接OA、OB过O作OG⊥AB;
∵六边形ABCDEF为正六边形,
∴∠AOB==60°;
∵OA=OB,OG⊥AB,
∴∠AOG==30°,
∴AG=OA•sin30°=1×=
∴AB=2AG=2×=1,
∴C六边形ABCD=6AB=6.
如图(2)连接OA、OB过O作OG⊥AB;
∵六边形ABCDEF为正六边形,
∴∠AOB==60°,
∵OA=OB,OG⊥AB,
∴∠AOG==30°,
∴AG=OG•tan30°=
∴AB=2AG=2×=
∴C六边形ABCDEF=6AB=6×=4cm.
∴圆的内接正六边形和外切正六边形的周长的比=6:4=:2.
点评:本题考查学生对正多边形的概念掌握和计算的能力.
解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•天津)已知二次函数y=ax2+bx+c的图象过点A(2,4),顶点的横坐标为,它的图象与x轴交于两点B(x1,0)、C(x2,0),与y轴交于点D,且x12+x22=13.试问:y轴上是否存在点P,使得△POB与△DOC相似(O为坐标原点)?若存在,请求出过P、B两点直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(01)(解析版) 题型:选择题

(1999•天津)二次函数y=-x2-2x+2的顶点坐标、对称轴分别是( )
A.(1,3),x=1
B.(-1,3),x=1
C.(-1,3),x=-1
D.(1,3),x=-1

查看答案和解析>>

科目:初中数学 来源:1999年天津市中考数学试卷(解析版) 题型:解答题

(1999•天津)已知二次函数y=ax2+bx+c的图象过点A(2,4),顶点的横坐标为,它的图象与x轴交于两点B(x1,0)、C(x2,0),与y轴交于点D,且x12+x22=13.试问:y轴上是否存在点P,使得△POB与△DOC相似(O为坐标原点)?若存在,请求出过P、B两点直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年天津市中考数学试卷(解析版) 题型:选择题

(1999•天津)同一个圆的内接正六边形和外切正六边形的周长的比等于( )
A.3:4
B.:2
C.2:
D.1:2

查看答案和解析>>

同步练习册答案