精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=AC,BD平分∠ABC,∠A=36°,
(1)求证:△ABC∽△BCD;
(2)求证:CD=数学公式

证明:(1)∵AB=AC,∠A=36°,∴∠B=∠C=72°,
∴∠ABD=∠CBD=36°,∠BDC=∠C=72°,
即AD=BD=BC,
∴△ABC∽△BCD.

(2)由(1)中△ABC∽△BCD可得=,AB•CD=BC2
即(BC+CD)•CD=BC2
BC•CD+CD2=BC2
化简得CD=BC,
即CD=AD.
分析:(1)由角相等可判定三角形相似;
(2)由角相等得出线段相等,再由相似三角形的对应边成比例可得线段之间的关系,进而解方程即可.
点评:本题主要考查了相似三角形的判定及性质问题,能够利用其性质求解一些简单的计算、证明问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案