精英家教网 > 初中数学 > 题目详情

【题目】已知:在中,CD分别为BMAM上的点,四边形ABCD内接于,连接AC

如图,求证:弧BD

如图,若AB为直径,,求值;

如图,在的条件下,E为弧CD上一点不与CD重合FAB上一点,连接EFAC于点N,连接DNDE,若,求AN的长.

【答案】(1)详见解析;(2)(3)

【解析】

证明弧BD可以转化证明
是直径可知三角形ABD是等腰直角三角形,从而得出,利用的特殊性构造直角三角形DCG,结合,可以求出,进而求出
为了求AN,可以过点N于点M,求出MNAM,即可求出因为PBD的中点,所以连结OP,根据垂径定理可以得出,根据可得,从而得到矩形OPLH,结合矩形的性质,可以得出OHEH的长度关系,在利用勾股定理建立方程,可求出HO,进而求出MNAM,最终得出AN的长度.

BD

于点G,连结如图

为直径

连结BDACEF分别为点P,点L,连结OPOEPE,再作于点H于点如图3所示

PBD的中点

四边形OPLH为矩形

,则

垂直平分NE

为等腰直角三角形

解得

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点都在反比例函数的图象上.

1)求的值;

2)如果轴上一点,轴上一点,以点为顶点的四边形是平行四边形,试求直线的函数表达式;

3)将线段沿直线进行对折得到线段,且点始终在直线上,当线段轴有交点时,则的取值范围为_______(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A20)、B31)、C13).

1)将ABC沿x轴负方向移动2个单位长度至A1B1C1,画图并写出点C1的坐标;

2)以点A1为旋转中心,将A1B1C1逆时针方向旋转90°得到A2B2C2,画图并写出点C2的坐标;

3)以BC1C2为顶点的三角形是   三角形,其外接圆的半径R   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数(abc是常数,a≠0)图象的一部分,与x轴的交点A在点(20)(30)之间,对称轴是x=1.对于下列说法:①当时,;②;③;④3a+c>0,其中正确的是( )

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数yax2+bx+c的图象如图所示,下列结论中:

①abc0②b24ac0③3a+c0a+c2b2⑤a+b+c0

其中正确的序号是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,,点EF分别是BCAD的中点.

1)求证:

2)当时,求四边形AECF的面积.

查看答案和解析>>

同步练习册答案