精英家教网 > 初中数学 > 题目详情
如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.
分析:作出辅助线,利用射影定理以及四点共圆的性质得出EFOQ四点共圆,BECQ四点共圆,进而得出四边形ABCD是平行四边形,从而得出答案即可.
解答:证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,
所以PC2=PQ•PO(射影定理),
又PC2=PE•PF,
所以EFOQ四点共圆,
∠EQF=∠EOF=2∠BAD,
又∠PQE=∠OFE=∠OEF=∠OQF,
而CQ⊥PD,所以∠EQC=∠FQC,因为∠AEC=∠PQC=90°,
故B、E、C、Q四点共圆,
所以∠EBC=∠EQC=
1
2
∠EQF=
1
2
∠EOF=∠BAD,
∴CB∥AD,
所以BO=DO,即四边形ABCD是平行四边形,
∴AB=DC,BC=AD.
点评:此题主要考查了四点共圆的性质以及射影定理,根据已知得出EFOQ四点共圆,BECQ四点共圆是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,线段PB过圆心O,交圆O于A,B两点,PC切圆O于点C,作AD⊥PC,垂足为D,连接AC,BC.
(1)写出图1中所有相等的角(直角除外),并给出证明;
(2)若图1中的切线PC变为图2中割线PCE的情形,PCE与圆O交于C,E两精英家教网点,AE与BC交于点M,AD⊥PE,写出图2中相等的角(写出三组即可,直角除外);
(3)在图2中,证明:AD•AB=AC•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.
精英家教网

查看答案和解析>>

科目:初中数学 来源:初中几何经典题(解析版) 题型:解答题

如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.

查看答案和解析>>

同步练习册答案