精英家教网 > 初中数学 > 题目详情
如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=CE=3,则AD=
6
2
6
2
分析:首先证明△ABE≌△CED,得到∠AEB=∠EDC,在利用30°所对的直角边是斜边的一半和勾股定理计算即可.
解答:解:∵AB⊥BC,DC⊥BC,∠BAE=∠DEC=60°,
∴∠AEB=∠CDE=30°,
∵30°所对的直角边是斜边的一半,AB=CE=3,
∴AE=6,DE=6,
在△ABE和△CED中,
∠BAE=∠DEC
AB=CE
∠ABE=∠ECD=90°

∴△ABE≌△CED(ASA),
∴∠AEB=∠EDC,
∵∠EDC+∠DEC=90°,
∴∠AED=90°
根据勾股定理
∴AD=
AE2+DE2
=6
2

故答案为:6
2
点评:本题考查了全等三角形的判定和性质,解决此类题目的关键是熟练掌握运用直角三角形两个锐角互余,30°所对的直角边是斜边的一半,勾股定理的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB=BC=CA=AD,AH⊥CD于H,CP⊥BC,CP交AH于P.求证:△ABC的面积S=
3
4
AP•BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,AB=BC=CD,且∠A=15°,则∠ECD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,AB=BC=CD=1,则图中所有线段长度之和为
10

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BC=AC=AD,那么∠BDC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为
2
2

查看答案和解析>>

同步练习册答案