精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(
A.函数有最小值
B.对称轴是直线x=
C.当x< ,y随x的增大而减小
D.当﹣1<x<2时,y>0

【答案】D
【解析】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意; B、由图象可知,对称轴为x= ,正确,故B选项不符合题意;
C、因为a>0,所以,当x< 时,y随x的增大而减小,正确,故C选项不符合题意;
D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.
故选:D.
根据抛物线的开口方向,利用二次函数的性质判断A;
根据图形直接判断B;
根据对称轴结合开口方向得出函数的增减性,进而判断C;
根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y1= 与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.
(1)求k1 , k2 , b的值;
(2)求△AOB的面积;
(3)请直接写出不等式 x+b的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在﹣ ,0,﹣2, ,1中,绝对值最大的数为(
A.0
B.﹣
C.﹣2
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣ ),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.

(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字“幸”、“福”、“济”、“宁”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?
(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“济宁”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.

(1)求这座山的高度(小明的身高忽略不计);
(2)求索道AC的长(结果精确到0.1m).
(参考数据:tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC= , CD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1 , y1),B(x2 , y2)两点(A与B不重合),直线AB与x轴交于P(x0 , 0),与y轴交于点C.

(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1 , x2 , x0之间的关系(不要求证明).

查看答案和解析>>

同步练习册答案