阅读以下材料:
若关于x的三次方程x3+ax2+bx+c=0(a、b、c为整数)有整数解n,则将n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整数∴n2+an+b是整数∴n是c的因数.
上述过程说明:整数系数方程x3+ax2+bx+c=0的整数解n只能是常数项c的因数.
如:∵方程x3+4x2+3x-2=0中常数项-2的因数为:±1和±2,
∴将±1和±2分别代入方程x3+4x2+3x-2=0得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.
解决下列问题:
(1)根据上面的学习,方程x3+2x2+6x+5=0的整数解可能______;
(2)方程-2x3+4x2+12x-14=0有整数解吗?若有,求出整数解;若没有,说明理由.
【答案】分析:(1)认真学习题目给出的材料,掌握“整数系数方程x3+ax2+bx+c=0的整数解只可能是c的因数”,再作答.
(2)先变形为x3-2x2-6x+7=0,根据分析(1)得出7的因数后再代入检验可得出答案.
解答:解:(1)由阅读理解可知:该方程如果有整数解,它只可能是5的因数,而5的因数只有:±1,±5这四个数.
故答案为:±1,±5; …(4分)
(2)∵-2x3+4x2+12x-14=0
∴x3-2x2-6x+7=0…(6分)
∵方程x3-2x2-6x+7=0中常数项7的因数为:±1和±7 …(8分)
∴将±1和±7分别代入方程x3-2x2-6x+7=0得:x=1是该方程的整数解,-1、±7不是方程的整数解.…(10分)
点评:本题考查同学们的阅读能力以及自主学习、自我探究的能力,该类型的题是近几年的热点考题.
认真学习题目给出的材料,掌握“整数系数方程x3+ax2+bx+c=0的整数解只可能是c的因数”是解答问题的基础.