精英家教网 > 初中数学 > 题目详情

如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB、OB于E、F两点.

(1)求A点的坐标(3分);

(2)若OF+BE=AB,求证:CF=CE(4分)

(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE-EF的值不变;‚OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值(5分).

 

 

【答案】

(1)(4,4);(2)证明见解析;(3)OF+AE-EF值不变,且OF+AE-EF=0.

【解析】

试题分析:(1)可将(m-4)2+n2-8n=-16,通过移项、因式分解变形为:(m-4)2+(n-4)2=0.结合图象可知m、n都大于0,由此可得m=n=4.

(2)因为OF+BE=AB,所以OF=AE,由(1)易得四边形COAB是正方形;所以由SAS得△ACE≌△OCF,从而可证CF=CE.

(3)因为AC=OC,可想到绕点C将△ACE顺时针旋转900,到△OCH位置,如图,可证△HCF≌△ECF得HF=EF,而HF=AE+OF,所以OF+AE-EF=0.

试题解析:

解:(1)∵(m-4)2+n2-8n=-16,

∴(m-4)2+(n-4)2=0.

∴m=4,n=4.

证明:∵AB⊥x轴,AC⊥y轴,A(4,4),

∴AB=AC=OC=OB,

∠ACO=∠COB=∠ABO=90°,

∴四边形COAB是正方形

∴∠A=90°

∵OF+BE=AB=BE+AE

∴AE=OF,

∴△COF≌△CAE

∴CF=CE.

(3)OF+AE-EF值不变,且OF+AE-EF=0.如图,

证明:在x轴负半轴上取点H,使OH=AE,

∵CO=CA  ∠COH=∠CAE

∴△ACE≌△OCH

∴∠1=∠2

CH=CE,AE=OH

又∵∠EOF=45°

∴∠HCF=45°

∴△HCF≌△ECF

∴HF=EF

∴OF+AE=OF+OH=HF=EF

即OF+AE-EF=0.

考点:1、正方形性质.2、三角形全等的判定.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球精英家教网的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•武汉模拟)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.
(1)建立适当的平面直角坐标系,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);
(2)如图,在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3m,最内轨道的半径为rm,其上每0.3m的弧长上安装一个地漏,其它轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏.求当r为多少时池中安装的地漏的个数最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

一个多面体的面数(a)和这个多面体表面展开后得到的平面图形的顶点数(b),棱数(c)之间存在一定规律,如图1是正三棱柱的表面展开图,它原有5个面,展开后有10个顶点(重合的顶点只算一个),14条棱.

【探索发现】
(1)请在图2中用实线画出立方体的一种表面展开图;
(2)请根据图2你所画的图和图3的四棱锥表面展开图填写下表:
多面体 面数a 展开图的顶点数b 展开图的棱数c
直三棱柱 5 10 14
四棱锥
5
5
8 12
立方体
6
6
14
14
19
19
(3)发现:多面体的面数(a)、表面展开图的顶点数(b)、棱数(c)之间存在的关系式是
a+b-c=1
a+b-c=1

【解决问题】
(4)已知一个多面体表面展开图有17条棱,且展开图的顶点数比原多面体的面数多2,则这个多面体的面数是多少?

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 华师大八年级版 2009-2010学年 第13期 总第169期 华师大版 题型:044

工具阅读:

在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系.通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.

问题探究:如图1,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.

将图形F沿x轴向右平移1格得图形F1,称为作1次P变换;

将图形F沿y轴翻折得图形F2,称为作1次Q变换;

将图形F绕坐标原点顺时针旋转90°得图形F3,称为作1次R变换.

规定:PQ变换表示先作1次Q变换,再作1次P变换;QP变换表示先作1次P变换,再作1次Q变换;Rn变换表示作n次R变换.

解答下列问题:

(1)作R4变换相当于至少作________次Q变换;

(2)请在图2中画出图形F作R2011变换后得到的图形F4

(3)PQ变换与QP变换是否是相同的变换?请在图3中画出PQ变换后得到的图形F5,在图4中画出QP变换后得到的图形F6

查看答案和解析>>

科目:初中数学 来源:2011-2012学年重庆市南开中学九年级(上)第一次月考数学试卷(解析版) 题型:解答题

暑假期间,北关中学对网球场进行了翻修,在水平地面点A处新增一网球发射器向空中发射网球,网球飞行线路是一条抛物线(如图所示),在地面上落点为B.有同学在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内,已知AB=4m,AC=3m,网球飞行最大高度OM=5m,圆柱形桶的直径为0.5m,高为0.3m(网球的体积和圆柱形桶的厚度忽略不计),以M点为顶点,抛物线对称轴为y轴,水平地面为x轴建立平面直角坐标系.
(1)请求出抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?

查看答案和解析>>

同步练习册答案