精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(    )

A.22            B.20             C.18             D.16
D.

试题分析::在Rt△ABC中,
∵AC=6,AB=8,
∴BC=10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=16.
故选D.
考点1.平行四边形的判定与性质2.勾股定理3.三角形中位线定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在?ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;

(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;

(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC,(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, △ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,AD=2AB,E、F分别是AD、BC上的点,且线段EF过矩形对角线AC的中点O,且EF⊥AC,PF∥AC,则EF:PE的值是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm2,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形ABDC的面积是(    )
A.40 cm2B.60 cm2C.70 cm2D.80 cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在菱形中,对角线分别等于8和6,将沿的方向平移,使重合,延长线上的点重合,则四边形的面积等于( )
A.36B.48C.72D.96

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的关系是S1       S2(填“>”或“<”或“=”)

查看答案和解析>>

同步练习册答案