精英家教网 > 初中数学 > 题目详情
(2013•门头沟区二模)如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且AB=4,BC=8.

(1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH;
(2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少;
(3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.
分析:(1)根据网格结构,作出相等的角即可得到反射四边形;
(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后即可得到周长,图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,从而得到四边形EFGH的周长是定值;
(3)根据网格得出各四边形的面积,进而得出答案.
解答:解:(1)如图3所示:
利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH. 

(2)∵图2中HE=2
5
,EF=2
5
,GF=2
5
,HG=2
5

∴四边形EFGH的周长为:2
5
×4=8
5

图3中HE=3
5
,EF=
5
,GF=3
5
,HG=
5

∴四边形EFGH的周长为:(3
5
+
5
)×2=8
5

∴图2、图3中矩形ABCD的反射四边形EFGH的周长是定值,定值是8
5


(3)∵图2中四边形EFGH的面积为:4×8-
1
2
×2×4×4=16,
图3中四边形EFGH的面积为:4×8-
1
2
×1×2×2-
1
2
×3×6×2=12,
∴图2、图3中矩形ABCD的反射四边形EFGH的面积不是定值,它们的面积分别是16、12.
点评:本题考查了应用与设计作图、勾股定理的应用、矩形的性质等知识,读懂题意理解“反射四边形EFGH”特征是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•门头沟区二模)PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)已知圆锥侧面展开图的扇形半径为2cm,面积是
4
3
πcm2
,则扇形的弧长和圆心角的度数分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是
10
3
10
3
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区二模)如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?

查看答案和解析>>

同步练习册答案