精英家教网 > 初中数学 > 题目详情
25、将一副三角板的直角重合放置,如图1所示,
(1)图1中∠BEC的度数为
165°

(2)三角板△AOB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:
①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;
②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否还会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.
分析:(1)由已知可求出∠CAE=180°-60°=120°,再根据三角形外角性质求出∠BEC的度数.
(2)①由OD∥AB可得∠BOD=∠B=30°,再由∠BOD+∠BOC=90°和∠AOC+∠BOC=90°求出∠AOC.
②将三角板△COD继续绕O旋转,OC边能与AB平行,由平行可得∠COB=∠B=30°,从而求出∠AOC..
解答:解:(1)∠∠CAE=180°-∠BAO=180°-60°=120°,
∴∠BEC=∠C+∠CAE=45°+120°=165°,
故答案为:165°.

(2)①∵OD∥AB,
∴∠BOD=∠B=30°,
又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,
∴∠AOC=∠BOD=30°.
②存在,
∠AOC=120°.
点评:此题考查的知识点是平行线的性质及三角形的外角性质,解题的关键是根据三角形外角性质平行线的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源:2013-2014学年江苏省无锡市南长区九年级上学期期末考试数学试卷(解析版) 题型:解答题

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4DE=4,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BAFD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.

(1)如图(2),当三角板DEF运动到点D与点A重合时,设EFBC交于点M,则∠EMC= ?? 度;

(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;

(3)在三角板DEF运动过程中,当DBA的延长线上时,设BF=x,两块三角板重迭部分的面积为y.求yx的函数关系式,并求出对应的x取值范围.

 

查看答案和解析>>

同步练习册答案