精英家教网 > 初中数学 > 题目详情

(2011•临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

解(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(﹣2,0),B(﹣3,3),O(0,0)可得

解得
故抛物线的解析式为y=x2+2x;
(2)①当AE为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,
则D在x轴下方不可能,
∴D在x轴上方且DE=2,
则D1(1,3),D2(﹣3,3);
②当AO为对角线时,则DE与AO互相平方,
因为点E在对称轴上,
且线段AO的中点横坐标为﹣1,
由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)
故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1);

(3)存在,
如上图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2
∴△BOC是直角三角形.
假设存在点P,使以P,M,A为顶点的三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则=
即 x+2=3(x2+2x)
得:x1=,x2=﹣2(舍去).
当x=时,y=,即P().
②若△PMA∽△BOC,则=
即:x2+2x=3(x+2)
得:x1=3,x2=﹣2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P()或(3,15).

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.
(1)求一次函数与反比例函数的解析式;
(2)根据所给条件,请直接写出不等式kx+b>的解集;
(3)过点B作BC⊥x轴,垂足为C,求S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•临沂)如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=

(1)求⊙O的半径:
(2)求图中阴影部分的面枳.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•临沂)如图,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是(  )

A、12            B、14      C、16             D、18

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东临沂卷)数学解析版 题型:解答题

(2011•临沂)如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=

(1)求⊙O的半径:
(2)求图中阴影部分的面枳.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东临沂卷)数学解析版 题型:解答题

(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.

(1)求证:EF=EG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.

查看答案和解析>>

同步练习册答案